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LETTER TO THE EDITOR 

Proof of integrability for five-wave interactions in a case with 
unequal coupling constants 

Frank Verheest 
Instituut voor Theoretische Mechanica, Rijksuniversiteit Gent, Krijgslaan 281, 8-9000 
Gent, Belgium 

Received 18 March 1988 

Abstract. Complete integrability is proved for a system of ODE describing the double 
three-wave interaction between five waves, when the coupling constant in one triplet is 
twice as large as in the other. Known results from the Painlevt analysis for this case are 
combined with the Yoshida-Kovalevskaya approach to gain insight about the degree of 
the missing first integral. This integral of degree six is then obtained via a direct search 
based on irreducible forms, elementary building blocks for polynomial first integrals in 
involution with the Manley-Rowe invariants. 

In this letter we study the system of coupled ODE describing the non-linear interaction 
between five waves coupled in two triplets, where the common wave is a pump wave. 
The equations for the slow evolution of the wave amplitudes are given in complex 
notation (see, e.g., Verheest (1987~)):  

uo = i a la2  + ipa3a4 

a 3  = i/*aoh4 

d l  = iaodz a, = iaod, 

( 1 )  a - -  
4 - ~ a n a 3  

plus their complex conjugates. This is a special case of the interaction between N 
triplets, as studied before in ocean wave dynamics and/or plasma turbulence by Watson 
et al (1976) and Menyuk et al (1983a, b). In the latter papers the PainlevC analysis 
was used to determine the integrability of systems such as ( l) ,  viewed as Hamiltonian, 
derivable from 

H-aod,d,+ doala2f/.b(aod3d4+ doa3a4) ( 2 )  

with canonical equations in the form (Verheest 1987a): 

dj = iaH/adj B = -iaH/aaj j =0, . . . ,4 .  (3) 

Thus complex conjugates are canonically conjugate Hamiltonian variables. 
From the PainlevC analysis carried out by Menyuk et al (1983a) it followed that 

(1) was deemed integrable (here for simplicity leaving out the frequency detunings 
and taking N = 2 )  when either p = 1 or p = 2 or (depending on the order in which 
the waves are numbered). There are already four first integrals at arbitrary p, namely 
three Manley-Rowe relations 
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besides H itself. As these four first integrals are independent and mutually in involution, 
a fifth such one is necessary to prove complete integrability (Pars 1965). 

For the case where p = 1, this was done (for arbitrary N and including detunings) 
via Lax operators combined with a direct search by Menyuk et a1 (1983b), with different 
Lax operators by Wojciechowski et al (1986) and by a direct search based on what we 
have called irreducible forms (Verheest 1987b). These irreducible forms can be defined 
in different ways, perhaps easiest here as the simplest polynomials in aj and cij which 
are in involution with the Manley-Rowe relations (4), using the symmetries generated 
by these first integrals. For the set (1) the only irreducible forms are 

L =  ala2d,d,+d,d2a,a,. 

The idea then is to look for the remaining first integral as a polynomial in the irreducible 
forms, thus ensuring its involution with the Manley-Rowe relations. 

The case p = 2 (or;), however, has so far proved intractable, apparently by whatever 
method. It is the purpose of the present letter to combine Yoshida’s theorems (Yoshida 
1983a, b), the results of the PainlevC analysis of Menyuk et al (1983a) and the concept 
of the irreducible forms (Verheest 1987b) to find a fifth independent first integral when 
p = 2  (or i). This follows the method proposed by Roekaerts and Schwarz (1987) 
except that the direct search is vastly simplified by the use of irreducible forms. 

In order to facilitate the application of Yoshida’s theorems and the computation 
of the Kovalevskaya exponents we formally rewrite (1) as a system of ODE in real 
variables aJ and A, (e.g., by regarding T = it as the new independent variable): 

U0 = U1 a2 + pa3a4 Ao= -AlA2 - pA3A4 

U , =  aoA2 A ,  = -Ao~2  U 2  = uOAI A2 = -Aoa, (6) 

U 3  = p ~ o A 4  A3 = - / * A O U ~  U 4  = p ~ o A 3  A4 = - / . L A ~ u ~ .  

Here uJ and AJ are now real, standard canonically conjugate variables and ( 2 )  is 
replaced by 

H = aoA,AZ+ A o ~ , ~ 2 + p ( ~ o A 3 A 4 + A o ~ 3 ~ 4 ) .  (7) 
For the determination of the Kovalevskaya exponents one starts from the similarity 

transformation 

t + f f - ’ t  U, + CY %lJ + G l ~ J .  (8) 
Applied to (6), this gives a set of possible gJ and GI,  which are here, in contrast to 
Yoshida’s examples, not unique: 

go = 3 - GI - G2 Go = GI + G2 - 1 

g l = 2 - G l  g2=2-G2 g ,  = 2 - G3 (9) 

g4=  2 + G3- GI - G2 G4= GI + G2 - G3. 

It is worth noting that for whatever choice of weights satisfying (9) the irreducible 
forms ( 5 )  are always weighted homogeneous of fixed degree ( 2 ,  3 or 4, respectively). 
Next one looks for a particular solution of (6) in the form 

aJ = C, ( T - T ~ ) - ~ J  A ,=  C , ( T - T ~ ) - ~ ~  (10) 
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and determines cj and Cj. Because the weights gj and Gj are not unique, many different 
possibilities arise, leading, as we shall see, to a certain ambiguity in the application 
of Yoshida's method. If p # 1, not all cj ,  Cj can be chosen non-zero. 

The Kovalevskaya exponents p are defined then as the roots of 

I 

= O  

if the RHS of the equations (6) are denoted byf; and 5 and the derivatives are evaluated 
for a particular choice of cj and Cj. 

A first and perhaps most obvious choice would be to take G, = G2 = G3 = 1,  leading 
to every aj and Aj scaling with cr or in (10) going as ( T - T~)-'. This requires inter alia 
that 

(1 + C O C 0 ) C j  = ( 1 + COCO) cj = 0 

(1+p2coco)ck =(1+p2coco)ck  = o  k = 3 , 4 .  

j = l , 2  
(12) 

For the case at hand, where we want ultimately p = 2 (or f), we are forced to choose 
CO= -1/c,c2 

c1= c;' 
CO = c, c, 

c2 = c;' c3 = c4 = c3 = c4 = 0 
or something equivalent. Equation ( 1  1 )  then leads to 

K ( p )  = ( p +  l ) (p  -3)p2(p -2)2(p - p  - l ) * ( p + p  - 1)2=0.  (14) 
Yoshida's results indicate that if there exists a first integral $I of weighted degree 

M for a Hamiltonian system with Hamiltonian of weighted degree h, then M and 
h - 1 - M  appear as a pair of Kovalevskaya exponents, provided $I has a non-zero 
and finite gradient at the point a, = c,, AI = C,. As H is of degree 3, one is to find M 
and 2 - M as pairs. For p = 2 equation (14) gives a double pair (2,O) and a triple 
pair (3,-1). The double pair (2,O) corresponds to the Manley-Rowe relations (except 
for EB which has a vanishing gradient for the choice (13)). The triple pair (3,  - 1 )  is 
not only indicative of H, but suggests additional first integrals of degree 3. Of these, 
however, there are none, as a direct search has shown. For p =+ one gets a double 
pair (4, f), indicating not a simple polynomial. , 

So one returns to (9) and then chooses G1 = G2 = G3 = 2 and gets 
CO = 0 c,= 12[(1-p2)c,c,]-' 

~1C1=~2Cz=-~3C3=6(1  -p2) - '  (15) 
c4= -c ,C2(pc3)- '  C4 = 6pc3[( 1 - p2)cIc2]-I. 

Now ( 1  1) yields 

(16) 
independent of p. This induces one to look for a polynomial of degree six as the 
missing first integral. 

At this stage one returns to ( 1 )  and conducts a direct search. A fully general 
expression of degree 6 in the ten variables aj and 6, would require a priori 5005 terms. 
Hence the great economy in the use of irreducible forms, which combine into a general 
polynomial of degree six with only 43 terms. 

K ( p )  = ( P  + l ) ( p  -3)p3(p -2I3(p +4)(p -6)  = O  
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The missing first integral was thus duly found, after a long and tedious calculation. 
Armed with hindsight, it is perhaps (as usual!) better and simpler to give a more direct 
and constructive approach, in view of other applications and further extensions, which 
are now under study. 

We see in (4) that the quadratic irreducible form K O  can be eliminated via Eo.  If 
we define 

XA = K 1  + K2 = ~ ~ 6 ,  +a#,  X B =  K 3 + K 4 = a 3 6 , + a 4 d ,  (17 )  
then we can replace K 1 ,  K ,  by YIA, EA and K 3 ,  K4 by X E ,  E E .  In view of the fact that 

we attempt a general form for the missing first integral, presumed to be of degree six: 

I = L ( a X A  + PX, + YEA+ SEB + E E ~ )  + ~ H Z A +  l ~ 2 , +  P (19) 

with P a homogeneous polynomial of degree three in XA, X B ,  EA, EB and Eo. No 
term in HAHB was written, because it can be eliminated through the square of the 
Hamiltonian HA +’HE. Using (18 )  and 

2 1 utA = - H ~ H A  + - ( Y C ~  - E ’, ).%E ’ 2’ 

we see that 

PP ’ xAxE + ~ p ~ 2 ,  -- E: +- ( Y E A  + S E E  + E E ~ ) Y C ~  +- 
2 2 .  

This can indeed be made zero by taking 

5 = --alp 17 = -P’ 

2a P 1 

P 2P 2’ 
-_ - x, +- X E  +- ( Y E A  + 6EB + &EO). 
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A detailed inspection of what pB,  HA and stand for reveals that the 
conditions (22) are not only sufficient but also necessary for I to be a first integral. 
Condition (23 )  then gives what was already known from the PainlevC analysis, namely 
that for integrability p = 2 (forcing then p = 0) or p = f (giving a = 0). In any case 
w h e r e p Z 1 ,  y = f i = ~ = O .  

With p = 2, it follows from (22) that 

P =  - ~ c Y X ~ X B + ~ C Y E ~ X B  (24) 

and the first integral is thus (taking a = 4  to avoid fractions): 

I = 4 m A  - 2 H i  - 2XiX,3 + 
= 4(ala,d364+ d,d,a,a4)( a id ]  + a,&) -2( aodldz + doala,)’ 

- [ ( a ,  6, + a,d,)’ + 4a, 6, a,6,]( a363 + a464). 

One can easily check that it is independent of the other first integrals. Since it was 
constructed as a function of the irreducible forms, it is automatically in involution 
with EA, E B  and E,,  and as an invariant of the motion also with H. This completes 
the direct proof of the integrability of (1) also for p = 2. 

The main lesson to be drawn from this letter, besides the desired proof of integrabil- 
ity, is that the irreducible forms are quite powerful in simplifying a direct search, 
especially when coupled to the PainlevC and Yoshida-Kovalevskaya analyses. It is 
also seen that the restrictions on p follow in a natural way, should one not know them 
a priori. Work is in progress to extend the present results to the case of more interacting 
triplets and to also include detunings. 

It is a great pleasure to acknowledge many clarifying discussions with F Cantrijn, M 
Crampin, W Heremand and W Sarlet. 
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